Description
The Rho-GTPases-activating toxin CNF1 (cytotoxic necrotizing factor 1) delivers its catalytic activity into the cytosol of eukaryotic cells by a low pH membrane translocation mechanism reminiscent of that used by diphtheria toxin (DT). As DT, CNF1 exhibits a translocation domain (T) containing two predicted hydrophobic helices (H1-2) (aa 350-412) separated by a short peptidic loop (CNF1-TL) (aa 373-386) with acidic residues. In the DT loop, the loss of charge of acidic amino acids, as a result of protonation at low pH, is a critical step in the transfer of the DT catalytic activity into the cytosol. To determine whether the CNF1 T domain operates similarly to the DT T domain, we mutated several ionizable amino acids of CNF1-TL to lysine. Single substitutions such as D373K or D379K strongly decreased the cytotoxic effect of CNF1 on HEp-2 cells, whereas the double substitution D373K/D379K induced a nearly complete loss of cytotoxic activity. These single or double substitutions did not modify the cell-binding, enzymatic or endocytic activities of the mutant toxins. Unlike the wild-type toxin, single- or double-substituted CNF1 molecules bound to the HEp-2 plasma membrane could not translocate their enzymatic activity directly into the cytosol following a low pH pulse.