Description

Mutations and deletions of polycomb repressive complex (PRC) components are increasingly recognized to affect tumor biology in a range of cancers. However, little is known about how genetic alterations of PRC-interacting molecules such as the core binding factor (CBF) complex influence polycomb activity. We report that the acute myeloid leukemia (AML)-associated CBFβ-SMMHC fusion oncoprotein physically interacts with the PRC1 complex and that these factors co-localize across the AML genome in an apparently PRC2-independent manner. Depletion of CBFβ-SMMHC caused substantial increases in genome-wide PRC1 binding and marked changes in the association between PRC1 and the CBF DNA-binding subunit RUNX1. PRC1 was more likely to be associated with actively transcribed genes in CBFβ-SMMHC-expressing cells. CBFβ-SMMHC depletion had heterogeneous effects on gene expression, including significant reductions in transcription of ribosomal loci occupied by PRC1. Our results provide evidence that CBFβ-SMMHC markedly and diversely affects polycomb recruitment and transcriptional regulation across the AML genome.