Description

Extracellular signal-regulated kinases (ERK) regulate cellular functions in response to a variety of external signals. However, the specific functions of individual ERK isoforms are largely unknown. Hence, we have investigated the specific function of ERK1 in skin homeostasis and tumorigenesis in ERK1 knockout mice. They spontaneously develop cutaneous lesions and hyperkeratosis with epidermis thickness. Skin hyperproliferation and inflammation induced by application of 12-O-tetradecanoylphorbol-13-acetate (TPA) is strongly reduced in mutant mice. ERK1(-/-) mice are resistant to development of skin papillomas induced by 7,12-dimethylbenz(a)anthracene (DMBA) and promoted by TPA. Tumor appearance was delayed, their formation was less frequent, and their number and size were reduced. Keratinocytes obtained from knockout mice showed reduced growth and resistance to apoptotic signals, accompanied by an impaired expression of genes implicated in growth control and invasiveness. These results highlight the importance of ERK1 in skin homeostasis and in the process of skin tumor development.